Calculations

There are a variety of calculations that you will be called upon to do routinely in the laboratory. Herein we present some of the most common.

Dilutions: It is often necessary to dilute a concentrated solution. The concentration of a solution may be too high to measure accurately, you may be setting up a standard curve, or you may be preparing complex buffer mixtures from stock solutions. You will need to be able to calculate the appropriate volumes of solution and diluent.

Serial Dilutions: It is a common practice to prepare a series of progressively more dilute solutions of a concentrated initial solution. You might do this to determine the number of bacteria in a culture, or prepare a standard curve for a protein assay. Whatever your reason, the basic approach is the same.

Determine the dilution factor: While it is not actually necessary $\sqrt[7]{y}21()-20(n)20r$ prTodacessive

milli- (m-)	10-3	1 thousandth
micro- (µ-)	10-6	1 millionth
nano- (n-)	10-9	1 billionth
pico- (p-)	10-12	1 trillionth
femto- (f-)	10-15	1 quadrillionth
atto- (a-)	10-18	1 quintillionth
zepto- (z-)	10-21	1 sextillionth
yocto- (y-)	10 ⁻²⁴	1 septillionth

The only ones you will probably ever use are kilo-, centi-